

Production des Gaz Médicaux

Adnn Tlemçani Directeur Général Adjoint OXAIR

Sommaire

- Consistance de la production des gaz médicaux
- Production d'oxygène
- Production de protoxyde d'azote

Consistance de la production des Gaz médicaux

- ✓ Production des Gaz pouvant être utilisés dans des domaines thérapeutiques (Anesthésie, soins intensifs, pneumologie, chirurgie...) et dans les laboratoires des analyses hospitaliers.
- ✓ Respect des normes qualité sécurité, et des bonnes pratiques de fabrication.
- √ Respect de loi

Gaz Médicaux = Médicaments

Production d'oxygène

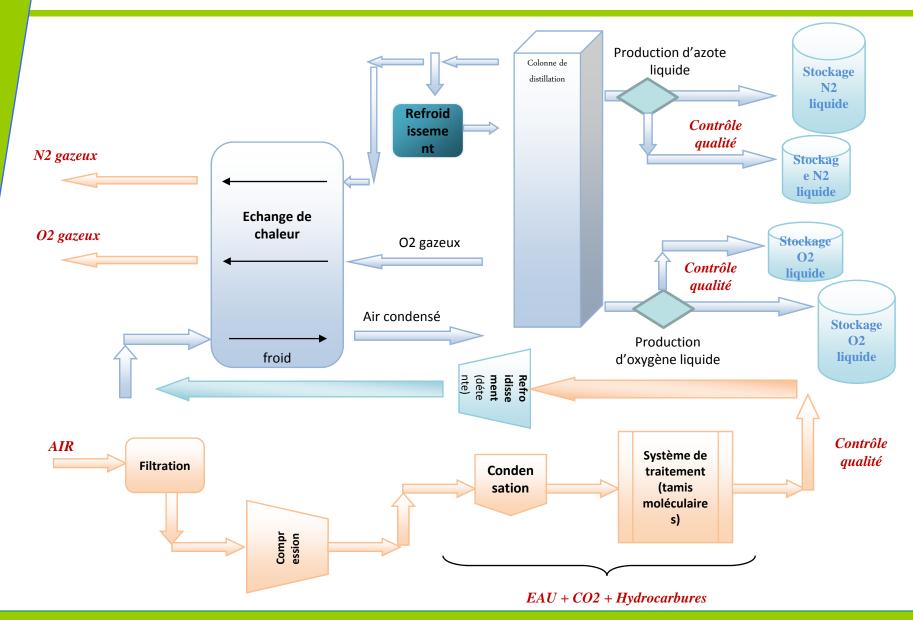
Composition de l'air (sec)

Gaz	% en volume	% en masse	Symbole chimique
Azote	78.08	75.47	N2
Oxygène	20.95	23.20	O2
Argon	0.93	1.28	Ar
Dioxyde de carbone	0.038	0.059	CO2

Besoin énorme en **Energie** pour séparer les molécule d'oxygène par **distillation fractionnée de l'air**

Procédé de fabrication

- ✓ L'oxygène est produit à partir de L'AIR selon un processus cryogénique de séparation à l'état liquide (très basses températures < -160°C).
- ✓ C'est la meilleure technologie pour la production de très haute pureté de l'oxygène (99,999% en oxygène).
- ✓ C'est une technique qui permet à la fois de produire l'oxygène et l'azote sous les deux formes Gaz et Liquide.


Description du processus de cryogénie

- ✓ Le processus de cryogénie comporte plusieurs étapes qui dépendent:
 - ✓ Du produit lui-même (oxygène, azote, oxygène et azote, oxygène, azote et argon).
 - ✓ De la qualité souhaitée (industrielle/ médicale/ laboratoire).
 - ✓ De la forme physique du produit (liquide ou gazeux)

Les étapes de production

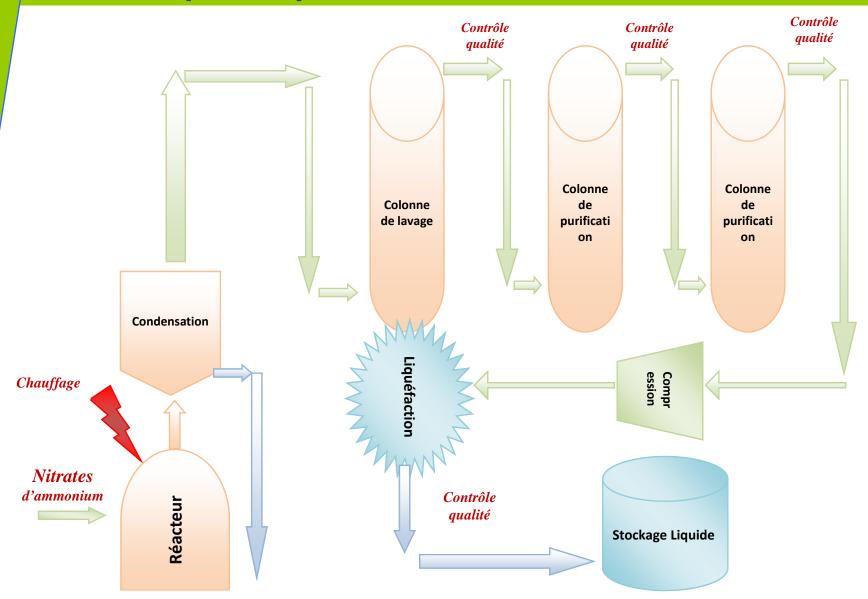
Les étapes de contrôle

- ✓ Contrôle en ligne de l'air:
 - ➤ Mesure de teneur en CO2 en ppm
 - Mesure de humidité en ppm
- ✓ Contrôle en ligne de l'oxygène
 - Mesure du dosage d'oxygène en ppm

- Mesure du dosage d'oxygène en %
- > Mesure de teneur en CO2 en ppm
- > Mesure de teneur en CO en ppm
- Mesure des traces d'humidité en ppm

Production de Protoxyde d'Azote

Procédé de fabrication


✓ Le protoxyde d'azote est produit décomposition, dans l'eau, des nitrates d'ammonium à haute température:

NH4NO3 N2O + 2 H2O

- ✓ Des impuretés sont produites comprenant les vapeurs de nitrate d'ammonium, l'azote et d'autres oxydes d'azote.
- ✓ La vapeur et les impuretés sont enlevées par le frottement avec de l'eau, soude caustique et l'acide sulfurique.
- ✓ Le procédé permet d'avoir des pureté élevées (99,9%).

Les étapes de production

Les étapes de contrôle

- ✓ Contrôle lors de la production:
 - Des traces de CO
 - Des traces de CO2
 - Des traces de NO/NOx
 - Des traces d'humidité
 - Des traces de NH3
- ✓ Contrôle du stockage:
 - Les mêmes contrôles + Dosage du protoxyde d'azote